转载;http://www.cnblogs.com/zgw21cn/archive/2009/11/07/1598238.html
假设从向银行申请贷款的顾户中,要选出优质顾客。怎么做?
现在有学习数据如下
ID |
孩子个数 |
薪水 |
婚姻状况 |
是否优质顾客? |
ID-1 |
2 |
45000 |
Married |
0 |
ID-2 |
0 |
30000 |
Single |
1 |
ID-3 |
1 |
40000 |
Divorced |
1 |
… |
如果从学习数据中学习出如下规则
IF (孩子个数(NOC) = 2) AND (薪水(S) > 80000) THEN 优良顾客 ELSE 不良顾客。
这条规则以一条树的形式可以表现如下。
遗传编程(genetic programming)基于遗传算法,传统的遗传算法是用定长的线性字符串表示一个基因。而遗传编程基于树的形式,其树的深度和宽度是可变的。树可以轻易表达算术表达式,逻辑表达式,程序等。例如
表示成树为
(2) 逻辑表达式:(x Ù true) ® (( x Ú y ) Ú (z « (x Ù y)))。可以由树表达为
(3)程序
i =1;
while (i < 20){
i = i +1
}
可以表示为
正因为遗传编程中,以树的形式来表达基因,因此遗传编程更适于表达复杂的结构问题。其用武之地也比遗传算法广泛得多了。开始的银行寻找优良顾客就是其中一例子。
遗传编程算法的一个最为简单的例子,是尝试构造一个简单的数学函数。假设我们有一个包含输入和输出的表,如下
x |
y |
Result |
2 |
7 |
21 |
8 |
5 |
83 |
8 |
4 |
81 |
7 |
9 |
75 |
7 |
4 |
65 |
其背后函数实际上是x*x+x+2*y+1。现在打算来构造一个函数,来拟合上述表格中的数据。
首先构造拟合数据。定义如下函数。
def examplefun(x, y): return x * x + x + 2 * y + 1 def constructcheckdata(count=10): checkdata = [] for i in range(0, count): dic = {} x = randint(0, 10) y = randint(0, 10) dic['x'] = x dic['y'] = y dic['result'] = examplefun(x, y) checkdata.append(dic) return checkdata
实际上一棵树上的节点可以分成三种,分别函数,变量及常数。定义三个类来包装它们:
class funwrapper: def __init__(self, function, childcount, name): self.function = function self.childcount = childcount self.name = name class variable: def __init__(self, var, value=0): self.var = var self.value = value self.name = str(var) self.type = "variable" def evaluate(self): return self.varvalue def setvar(self, value): self.value = value def display(self, indent=0): print '%s%s' % (' '*indent, self.var) class const: def __init__(self, value): self.value = value self.name = str(value) self.type = "constant" def evaluate(self): return self.value def display(self, indent=0): print '%s%d' % (' '*indent, self.value)
现在可以由这些节点来构造一棵树了。
class node: def __init__(self, type, children, funwrap, var=None, const=None): self.type = type self.children = children self.funwrap = funwrap self.variable = var self.const = const self.depth = self.refreshdepth() self.value = 0 self.fitness = 0 def eval(self): if self.type == "variable": return self.variable.value elif self.type == "constant": return self.const.value else: for c in self.children: result = [c.eval() for c in self.children] return self.funwrap.function(result) def getfitness(self, checkdata):#checkdata like {"x":1,"result":3"} diff = 0 #set variable value for data in checkdata: self.setvariablevalue(data) diff += abs(self.eval() - data["result"]) self.fitness = diff def setvariablevalue(self, value): if self.type == "variable": if value.has_key(self.variable.var): self.variable.setvar(value[self.variable.var]) else: print "There is no value for variable:", self.variable.var return if self.type == "constant": pass if self.children:#function node for child in self.children: child.setvariablevalue(value) def refreshdepth(self): if self.type == "constant" or self.type == "variable": return 0 else: depth = [] for c in self.children: depth.append(c.refreshdepth()) return max(depth) + 1 def __cmp__(self, other): return cmp(self.fitness, other.fitness) def display(self, indent=0): if self.type == "function": print (' '*indent) + self.funwrap.name elif self.type == "variable": print (' '*indent) + self.variable.name elif self.type == "constant": print (' '*indent) + self.const.name if self.children: for c in self.children: c.display(indent + 1) ##for draw node def getwidth(self): if self.type == "variable" or self.type == "constant": return 1 else: result = 0 for i in range(0, len(self.children)): result += self.children[i].getwidth() return result def drawnode(self, draw, x, y): if self.type == "function": allwidth = 0 for c in self.children: allwidth += c.getwidth()*100 left = x - allwidth / 2 #draw the function name draw.text((x - 10, y - 10), self.funwrap.name, (0, 0, 0)) #draw the children for c in self.children: wide = c.getwidth()*100 draw.line((x, y, left + wide / 2, y + 100), fill=(255, 0, 0)) c.drawnode(draw, left + wide / 2, y + 100) left = left + wide elif self.type == "variable": draw.text((x - 5 , y), self.variable.name, (0, 0, 0)) elif self.type == "constant": draw.text((x - 5 , y), self.const.name, (0, 0, 0)) def drawtree(self, jpeg="tree.png"): w = self.getwidth()*100 h = self.depth * 100 + 120 img = Image.new('RGB', (w, h), (255, 255, 255)) draw = ImageDraw.Draw(img) self.drawnode(draw, w / 2, 20) img.save(jpeg, 'PNG')
其中计算适应度的函数getfitness(),是将变量赋值后计算所得的值,与正确的数据集的差的绝对值的和。Eval函数即为将变量赋值后,计算树的值。构造出的树如下图,可由drawtree()函数作出。
其实这棵树的数学表达式为x*x-3x。
然后就可以由这此树来构造程序了。初始种群是随机作成的。
def _maketree(self, startdepth): if startdepth == 0: #make a new tree nodepattern = 0#function elif startdepth == self.maxdepth: nodepattern = 1#variable or constant else: nodepattern = randint(0, 1) if nodepattern == 0: childlist = [] selectedfun = randint(0, len(self.funwraplist) - 1) for i in range(0, self.funwraplist[selectedfun].childcount): child = self._maketree(startdepth + 1) childlist.append(child) return node("function", childlist, self.funwraplist[selectedfun]) else: if randint(0, 1) == 0:#variable selectedvariable = randint(0, len(self.variablelist) - 1) return node("variable", None, None, variable(self.variablelist[selectedvariable]), None) else: selectedconstant = randint(0, len(self.constantlist) - 1) return node("constant", None, None, None, const(self.constantlist[selectedconstant]))
当树的深度被定义为0时,表明是从重新开始构造一棵新树。当树的深度达到最高深度时,生长的节点必须是变量型或者常数型。
当然程序不止这些。还包括对树进行变异和交叉。变异的方式的方式为,选中一个节点后,产生一棵新树来代替这个节点。当然并不是所有的节点都实施变异,只是按一个很小的概率。变异如下:
def mutate(self, tree, probchange=0.1, startdepth=0): if random() < probchange: return self._maketree(startdepth) else: result = deepcopy(tree) if result.type == "function": result.children = [self.mutate(c, probchange, startdepth + 1) for c in tree.children] return result
交叉的方式为:从种群中选出两个优异者,用一棵树的某个节点代替另一棵树的节点,从而产生两棵新树。
def crossover(self, tree1, tree2, probswap=0.8, top=1): if random() < probswap and not top: return deepcopy(tree2) else: result = deepcopy(tree1) if tree1.type == "function" and tree2.type == "function": result.children = [self.crossover(c, choice(tree2.children), probswap, 0) for c in tree1.children] return result
以上变异及交叉都涉及到从现有种群中选择一棵树。常用的选择算法有锦标赛方法,即随机选出几棵树后,按fitness选出最优的一棵树。另一种方法是轮盘赌算法。即按fitness在种群的比率而随机选择。Fitness越大的树,越有可能被选中。如下所列的轮盘赌函数。
def roulettewheelsel(self, reverse=False): if reverse == False: allfitness = 0 for i in range(0, self.size): allfitness += self.population[i].fitness randomnum = random()*(self.size - 1) check = 0 for i in range(0, self.size): check += (1.0 - self.population[i].fitness / allfitness) if check >= randomnum: return self.population[i], i if reverse == True: allfitness = 0 for i in range(0, self.size): allfitness += self.population[i].fitness randomnum = random() check = 0 for i in range(0, self.size): check += self.population[i].fitness * 1.0 / allfitness if check >= randomnum: return self.population[i], i
其中参数reverse若为False,表明fitness越小,则这棵树表现越优异。不然,则越大越优异。在本例中,选择树来进行变异和交叉时,选择优异的树来进行,以将优良的基因带入下一代。而当变异和交叉出新的子树时,则选择较差的树,将其淘汰掉。
现在可以构造进化环境了。
def envolve(self, maxgen=100, crossrate=0.9, mutationrate=0.1): for i in range(0, maxgen): print "generation no.", i child = [] for j in range(0, int(self.size * self.newbirthrate / 2)): parent1, p1 = self.roulettewheelsel() parent2, p2 = self.roulettewheelsel() newchild = self.crossover(parent1, parent2) child.append(newchild)#generate new tree parent, p3 = self.roulettewheelsel() newchild = self.mutate(parent, mutationrate) child.append(newchild) #refresh all tree's fitness for j in range(0, int(self.size * self.newbirthrate)): replacedtree, replacedindex = self.roulettewheelsel(reverse=True) #replace bad tree with child self.population[replacedindex] = child[j] for k in range(0, self.size): self.population[k].getfitness(self.checkdata) self.population[k].depth=self.population[k].refreshdepth() if self.minimaxtype == "min": if self.population[k].fitness < self.besttree.fitness: self.besttree = self.population[k] elif self.minimaxtype == "max": if self.population[k].fitness > self.besttree.fitness: self.besttree = self.population[k] print "best tree's fitbess..",self.besttree.fitness self.besttree.display() self.besttree.drawtree()
每次按newbirthrate的比率,淘汰表现不佳的旧树,产生相应数目的新树。每次迭代完后,比较fitness,选出最佳的树。迭代的终止条件是其fitness等于零,即找到了正确的数学表达式,或者迭代次数超过了最大迭代次数。
还有其它一些细节代码,暂且按下不表。自由教程可按这里下载:http://www.gp-field-guide.org.uk/
全部代码可在这里下载:http://wp.me/pGEU6-z