大数据技术之_12_Sqoop学习_Sqoop 简介+Sqoop 原理+Sqoop 安装+Sqoop 的简单使用案例+Sqoop 一些常用命令及参数 - 黑泽君 - 博客园

第1章 Sqoop 简介第2章 Sqoop 原理第3章 Sqoop 安装3.1 下载并解压3.2 修改配置文件3.3 拷贝 JDBC 驱动3.4 验证 Sqoop3.5 测试 Sqoop 是否能够成功

来源: 大数据技术之_12_Sqoop学习_Sqoop 简介+Sqoop 原理+Sqoop 安装+Sqoop 的简单使用案例+Sqoop 一些常用命令及参数 – 黑泽君 – 博客园

 


第1章 Sqoop 简介第2章 Sqoop 原理第3章 Sqoop 安装3.1 下载并解压3.2 修改配置文件3.3 拷贝 JDBC 驱动3.4 验证 Sqoop3.5 测试 Sqoop 是否能够成功连接数据库第4章 Sqoop 的简单使用案例4.1 导入数据4.1.1 从 RDBMS 到 HDFS4.1.2 从 RDBMS 到 Hive4.1.3 从 RDBMS 到 HBase4.2 导出数据4.2.1 从 HIVE/HDFS 到 RDBMS4.3 脚本打包第5章 Sqoop 一些常用命令及参数5.1 常用命令列举5.2 命令&参数详解5.2.1 公用参数:数据库连接5.2.2 公用参数:import5.2.3 公用参数:export5.2.4 公用参数:hive5.2.5 命令&参数:import5.2.6 命令&参数:export5.2.7 命令&参数:codegen5.2.8 命令&参数:create-hive-table5.2.9 命令&参数:eval5.2.10 命令&参数:import-all-tables5.2.11 命令&参数:job5.2.12 命令&参数:list-databases5.2.13 命令&参数:list-tables5.2.14 命令&参数:merge5.2.15 命令&参数:metastore


第1章 Sqoop 简介

  Sqoop 是一款开源的工具,主要用于在 Hadoop(Hive) 与传统的数据库 (mySQL,postgreSQL,...) 间进行数据的高校传递,可以将一个关系型数据库(例如:MySQL,Oracle,Postgres等)中的数据导入到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。
Sqoop 项目开始于 2009 年,最早是作为 Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop 独立成为一个 Apache 顶级项目。
Sqoop2 的最新版本是 1.99.7。请注意,2 与 1 不兼容,且特征不完整,它并不打算用于生产部署。

第2章 Sqoop 原理

  将导入或导出命令翻译成 mapreduce 程序来实现。
在翻译出的 mapreduce 中主要是对 inputformat 和 outputformat 进行定制。

第3章 Sqoop 安装

  安装 Sqoop 的前提是已经具备 Java 和 Hadoop 的环境。

3.1 下载并解压

1) 下载地址:http://mirrors.hust.edu.cn/apache/sqoop/1.4.6/
2) 上传安装包 sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 到虚拟机中
3) 解压 sqoop 安装包到指定目录,如:

$ tar -zxf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/

4) 重命名 sqoop 安装目录,如:

[atguigu@hadoop102 module]$ mv sqoop-1.4.6.bin__hadoop-2.0.4-alphasqoop

3.2 修改配置文件

Sqoop 的配置文件与大多数大数据框架类似,在 sqoop 根目录下的 conf 目录中。
1) 重命名配置文件

$ mv sqoop-env-template.sh sqoop-env.sh

2) 修改配置文件

[atguigu@hadoop102 conf]$ pwd
/opt/module/sqoop/conf
[atguigu@hadoop102 conf]$ vim sqoop-env.sh

export HADOOP_COMMON_HOME=/opt/module/hadoop-2.7.2
export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.7.2
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10
export HBASE_HOME=/opt/module/hbase

3.3 拷贝 JDBC 驱动

拷贝 jdbc 驱动到 sqoop 的 lib 目录下,如:

[atguigu@hadoop102 sqoop]$ cp /opt/software/mysql-libs/mysql-connector-java-5.1.27/mysql-connector-java-5.1.27-bin.jar /opt/module/sqoop/lib/

3.4 验证 Sqoop

我们可以通过某一个 command 来验证 sqoop 配置是否正确:

[atguigu@hadoop102 sqoop]$ bin/sqoop help

出现一些 Warning 警告(警告信息已省略),并伴随着帮助命令的输出:

Available commands:
  codegen            Generate code to interact with database records
  create-hive-table     Import a table definition into Hive
  eval               Evaluate a SQL statement and display the results
  export             Export an HDFS directory to a database table
  help               List available commands
  import             Import a table from a database to HDFS
  import-all-tables     Import tables from a database to HDFS
  import-mainframe    Import datasets from a mainframe server to HDFS
  job                Work with saved jobs
  list-databases        List available databases on a server
  list-tables           List available tables in a database
  merge              Merge results of incremental imports
  metastore           Run a standalone Sqoop metastore
  version            Display version information

3.5 测试 Sqoop 是否能够成功连接数据库

[atguigu@hadoop102 sqoop]$ bin/sqoop list-databases --connect jdbc:mysql://hadoop102:3306/ --username root --password 123456

出现如下输出:

information_schema
metastore
mysql
performance_schema
test

第4章 Sqoop 的简单使用案例

4.1 导入数据

  在 Sqoop 中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用 import 关键字。

4.1.1 从 RDBMS 到 HDFS

1) 确定 Mysql 服务开启正常
查询监控端口或者查询进程来确定,以下两种办法可以确认mysql是否在启动运行状态:
办法一:查询端口

$ netstat -tulpn

MySQL监控的是TCP的3306端口,如下图,说明MySQL服务在运行中。

办法二:查询进程

ps -ef | grep mysqld

可以看见mysql的进程

2) 在 Mysql 中新建一张表并插入一些数据

$ mysql -uroot -p123456
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas''Male');
mysql> insert into company.staff(name, sex) values('Catalina''FeMale');

3) 导入数据
(1)全部导入

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"

(2)查询导入

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from staff where id <=1 and $CONDITIONS;'

等价于

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query "select name,sex from staff where id <=1 and \$CONDITIONS;"

提示:must contain ‘$CONDITIONS’ in WHERE clause.
$CONDITIONS:传递作用。
如果 query 后使用的是双引号,则 $CONDITIONS 前必须加转义符,防止 shell 识别为自己的变量。
(3)导入指定列

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--columns id,sex \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"

提示:columns中如果涉及到多列,用逗号分隔,分隔时不要添加空格。
(4)使用 sqoop 关键字筛选查询导入数据

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--where "id=1" \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--columns id,sex \
--where "id=1" \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"

4.1.2 从 RDBMS 到 Hive

(1)全部导入

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--num-mappers 1 \
--fields-terminated-by "\t" \
--hive-import \
--hive-overwrite \
--hive-table staff_hive

提示:该过程分为两步,第一步将数据导入到 HDFS,第二步将导入到 HDFS 的数据迁移到 Hive 仓库,第一步默认的临时目录是 /user/atguigu/表名。

4.1.3 从 RDBMS 到 HBase

(1)导入数据

[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--columns "id,name,sex" \
--num-mappers 1 \
--column-family "info" \
--hbase-create-table \
--hbase-row-key "id" \
--hbase-table "hbase_staff" \
--split-by id

会报错,如下图所示:

原因:sqoop1.4.6 只支持 HBase1.0.1 之前的版本的自动创建 HBase 表的功能。
解决方案:手动创建 HBase 表

hbase> create 'hbase_staff','info'

(5) 在 HBase 中 scan 这张表得到如下内容

hbase> scan ‘hbase_staff’

4.2 导出数据

在Sqoop中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用 export 关键字。

4.2.1 从 HIVE/HDFS 到 RDBMS

(1)导出数据

[atguigu@hadoop102 sqoop]$ bin/sqoop export \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--num-mappers 1 \
--export-dir /user/hive/warehouse/staff_hive \
--input-fields-terminated-by "\t"

提示:Mysql 中如果表不存在,不会自动创建。

4.3 脚本打包

使用opt格式的文件打包 sqoop 命令,然后执行。
1) 创建一个 xxx.opt 文件

[atguigu@hadoop102 sqoop]$ pwd
/opt/module/sqoop
[atguigu@hadoop102 sqoop]$ mkdir opt
[atguigu@hadoop102 sqoop]$ touch opt/job_HDFS2RDBMS.opt

2) 编写 sqoop 脚本

[atguigu@hadoop102 sqoop]$ cd opt/
[atguigu@hadoop102 opt]$ vim job_HDFS2RDBMS.opt 

export
--connect
jdbc:mysql://hadoop102:3306/company
--username
root
--password
123456
--table
staff
--num-mappers
1
--export-dir
/user/hive/warehouse/staff_hive
--input-fields-terminated-by
"\t"

3) 执行该脚本

[atguigu@hadoop102 sqoop]$ bin/sqoop --options-file opt/job_HDFS2RDBMS.opt

尖叫提示:Mysql 中如果表不存在,不会自动创建,所以我们要先创建表 staff,如果表 staff 存在,我们应该清除掉 staff 表的数据,不然会出现主键冲突!如下图所示:
通过查看日志历史服务器,可知:

第5章 Sqoop 一些常用命令及参数

5.1 常用命令列举

  这里给大家列出来了一部分 Sqoop 操作时的常用参数,以供参考,需要深入学习的可以参看对应类的源代码。

如下表所示:

序号 命令 说明
1 import ImportTool 将数据导入到集群
2 export ExportTool 将集群数据导出
3 codegen CodeGenTool 获取数据库中某张表数据生成 Java 并打包 Jar
4 create-hive-table CreateHiveTableTool 创建 Hive 表
5 eval EvalSqlTool 查看 SQL 执行结果
6 import-all-tables ImportAllTablesTool 导入某个数据库下所有表到 HDFS 中
7 job JobTool 用来生成一个 sqoop 的任务,生成后,该任务并不执行,除非使用命令执行该任务。
8 list-databases ListDatabasesTool 列出所有数据库名
9 list-tables ListTablesTool 列出某个数据库下所有表
10 merge MergeTool 将 HDFS 中不同目录下面的数据合并在一起,并存放在指定的目录中
11 metastore MetastoreTool 记录 sqoop job 的元数据信息,如果不启动 metastore 实例,则默认的元数据存储目录为:~/.sqoop,如果要更改存储目录,可以在配置文件 sqoop-site.xml 中进行更改。
12 help HelpTool 打印 sqoop 帮助信息
13 version VersionTool 打印 sqoop 版本信息

5.2 命令&参数详解

  刚才列举了一些 Sqoop 的常用命令,对于不同的命令,有不同的参数,让我们来一一列举说明。
首先来我们来介绍一下公用的参数,所谓公用参数,就是大多数命令都支持的参数。

5.2.1 公用参数:数据库连接

序号 参数 说明
1 –connect 连接关系型数据库的URL
2 –connection-manager 指定要使用的连接管理类
3 –driver Hadoop 根目录
4 –help 打印帮助信息
5 –password 连接数据库的密码
6 –username 连接数据库的用户名
7 –verbose 在控制台打印出详细信息

5.2.2 公用参数:import

序号 参数 说明
1 –enclosed-by < char> 给字段值前加上指定的字符
2 –escaped-by < char> 对字段中的双引号加转义符
3 –fields-terminated-by < char> 设定每个字段是以什么符号作为结束,默认为逗号
4 –lines-terminated-by < char> 设定每行记录之间的分隔符,默认是 \n
5 –mysql-delimiters Mysql默认的分隔符设置,字段之间以逗号分隔,行之间以 \n分隔,默认转义符是 \,字段值以单引号包裹
6 –optionally-enclosed-by < char> 给带有双引号或单引号的字段值前后加上指定字符

5.2.3 公用参数:export

序号 参数 说明
1 –input-enclosed-by < char> 对字段值前后加上指定字符
2 –input-escaped-by < char> 对含有转移符的字段做转义处理
3 –input-fields-terminated-by < char> 字段之间的分隔符
4 –input-lines-terminated-by < char> 行之间的分隔符
5 –input-optionally-enclosed-by < char> 给带有双引号或单引号的字段前后加上指定字符

5.2.4 公用参数:hive

序号 参数 说明
1 –hive-delims-replacement < arg> 用自定义的字符串替换掉数据中的 \r\n 和 \013 \010 等字符
2 –hive-drop-import-delims 在导入数据到 hive 时,去掉数据中的 \r\n \013 \010这样的字符
3 –map-column-hive < arg> 生成 hive 表时,可以更改生成字段的数据类型
4 –hive-partition-key 创建分区,后面直接跟分区名,分区字段的默认类型为 string
5 –hive-partition-value < v> 导入数据时,指定某个分区的值
6 –hive-home < dir> hive 的安装目录,可以通过该参数覆盖之前默认配置的目录
7 –hive-import 将数据从关系数据库中导入到 hive 表中
8 –hive-overwrite 覆盖掉在 hive 表中已经存在的数据
9 –create-hive-table 默认是 false,即,如果目标表已经存在了,那么创建任务失败。
10 –hive-table 后面接要创建的 hive 表,默认使用 MySQL 的表名
11 –table 指定关系数据库的表名

公用参数介绍完之后,我们来按照命令介绍命令对应的特有参数。

5.2.5 命令&参数:import

将关系型数据库中的数据导入到 HDFS(包括Hive,HBase)中,如果导入的是 Hive,那么当 Hive 中没有对应表时,则自动创建。
1) 命令:
如:导入数据到 hive 中

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--hive-import

如:增量导入数据到 hive 中,mode=append

append导入:

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--num-mappers 1 \
--fields-terminated-by "\t" \
--target-dir /user/hive/warehouse/staff_hive \
--check-column id \
--incremental append \
--last-value 3

尖叫提示:append 不能与 –hive 等参数同时使用(Append mode for hive imports is not yet supported. Please remove the parameter –append-mode)

如:增量导入数据到 hdfs 中,mode=lastmodified

先在mysql中建表并插入几条数据:
mysql> create table company.staff_timestamp(id int(4), name varchar(255), sex varchar(255), last_modified timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP);
mysql> insert into company.staff_timestamp (id, name, sex) values(1'AAA''female');
mysql> insert into company.staff_timestamp (id, name, sex) values(2'BBB''female');

先导入一部分数据:
$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff_timestamp \
--delete-target-dir \
--m 1

再增量导入一部分数据:
mysql> insert into company.staff_timestamp (id, name, sex) values(3'CCC''female');

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff_timestamp \
--check-column last_modified \
--incremental lastmodified \
--last-value "2017-09-28 22:20:38" \
--m 1 \
--append

尖叫提示:使用 lastmodified 方式导入数据,要指定增量数据是要 --append(追加)还是要 --merge-key(合并)
尖叫提示:last-value 指定的值是会包含于增量导入的数据中。

2) 参数:

序号 参数 说明
1 –append 将数据追加到 HDFS 中已经存在的 DataSet 中,如果使用该参数,sqoop 会把数据先导入到临时文件目录,再合并。
2 –as-avrodatafile 将数据导入到一个 Avro 数据文件中
3 –as-sequencefile 将数据导入到一个 sequence 文件中
4 –as-textfile 将数据导入到一个普通文本文件中
5 –boundary-query < statement> 边界查询,导入的数据为该参数的值(一条sql语句)所执行的结果区间内的数据。
6 –columns < col1, col2, col3> 指定要导入的字段
7 –direct 直接导入模式,使用的是关系数据库自带的导入导出工具,以便加快导入导出过程。
8 –direct-split-size 在使用上面direct直接导入的基础上,对导入的流按字节分块,即达到该阈值就产生一个新的文件
9 –inline-lob-limit 设定大对象数据类型的最大值
10 –m或–num-mappers 启动N个 map 来并行导入数据,默认4个。
11 –query或–e < statement> 将查询结果的数据导入,使用时必须伴随参–target-dir,–hive-table,如果查询中有 where 条件,则条件后必须加上 $CONDITIONS 关键字
12 –split-by < column-name> 按照某一列来切分表的工作单元,不能与–autoreset-to-one-mapper连用(请参考官方文档)
13 –table < table-name> 关系数据库的表名
14 –target-dir < dir> 指定 HDFS 路径
15 –warehouse-dir < dir> 与14参数不能同时使用,导入数据到 HDFS 时指定的目录
16 –where 从关系数据库导入数据时的查询条件
17 –z或–compress 允许压缩
18 –compression-codec 指定 hadoop 压缩编码类,默认为 gzip(Use Hadoop codec default gzip)
19 –null-string < null-string> string 类型的列如果 null,替换为指定字符串
20 –null-non-string < null-string> 非 string 类型的列如果 null,替换为指定字符串
21 –check-column < col> 作为增量导入判断的列名
22 –incremental < mode> mode:append 或 lastmodified
23 –last-value < value> 指定某一个值,用于标记增量导入的位置

5.2.6 命令&参数:export

从 HDFS(包括Hive和HBase)中奖数据导出到关系型数据库中。
1) 命令:
如:

$ bin/sqoop export \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--export-dir /user/staff \
--input-fields-terminated-by "\t" \
--num-mappers 1

2) 参数:

序号 参数 说明
1 –direct 利用数据库自带的导入导出工具,以便于提高效率
2 –export-dir < dir> 存放数据的HDFS的源目录
3 -m或–num-mappers < n> 启动N个map来并行导入数据,默认4个
4 –table < table-name> 指定导出到哪个RDBMS中的表
5 –update-key < col-name> 对某一列的字段进行更新操作
6 –update-mode < mode> updateonly,allowinsert(默认)
7 –input-null-string < null-string> 请参考import该类似参数说明
8 –input-null-non-string < null-string> 请参考import该类似参数说明
9 –staging-table < staging-table-name> 创建一张临时表,用于存放所有事务的结果,然后将所有事务结果一次性导入到目标表中,防止错误
10 –clear-staging-table 如果第9个参数非空,则可以在导出操作执行前,清空临时事务结果表

5.2.7 命令&参数:codegen

将关系型数据库中的表映射为一个 Java 类,在该类中有各列对应的各个字段。
1) 命令:
如:

$ bin/sqoop codegen \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--bindir /home/admin/Desktop/staff \
--class-name Staff \
--fields-terminated-by "\t"

2) 参数:

序号 参数 说明
1 –bindir < dir> 指定生成的 Java 文件、编译成的 class 文件及将生成文件打包为 jar 的文件输出路径
2 –class-name < name> 设定生成的 Java 文件指定的名称
3 –outdir < dir> 生成 Java 文件存放的路径
4 –package-name < name> 包名,如 com.z,就会生成 com 和 z 两级目录
5 –input-null-non-string < null-str> 在生成的 Java 文件中,可以将 null 字符串或者不存在的字符串设置为想要设定的值(例如空字符串)
6 –input-null-string < null-str> 将null字符串替换成想要替换的值(一般与5同时使用)
7 –map-column-java < arg> 数据库字段在生成的 Java 文件中会映射成各种属性,且默认的数据类型与数据库类型保持对应关系。该参数可以改变默认类型,例如:–map-column-java id=long, name=String
8 –null-non-string < null-str> 在生成 Java 文件时,可以将不存在或者 null 的字符串设置为其他值
9 –null-string < null-str> 在生成 Java 文件时,将 null 字符串设置为其他值(一般与8同时使用)
10 –table < table-name> 对应关系数据库中的表名,生成的 Java 文件中的各个属性与该表的各个字段一一对应

5.2.8 命令&参数:create-hive-table

生成与关系数据库表结构对应的 hive 表结构。
1) 命令:
如:

$ bin/sqoop create-hive-table \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--hive-table hive_staff

2) 参数:

序号 参数 说明
1 –hive-home < dir> Hive 的安装目录,可以通过该参数覆盖掉默认的 Hive 目录
2 –hive-overwrite 覆盖掉在 Hive 表中已经存在的数据
3 –create-hive-table 默认是 false,如果目标表已经存在了,那么创建任务会失败
4 –hive-table 后面接要创建的 hive 表
5 –table 指定关系数据库的表名

5.2.9 命令&参数:eval

可以快速的使用 SQL 语句对关系型数据库进行操作,经常用于在 import 数据之前,了解一下 SQL 语句是否正确,数据是否正常,并可以将结果显示在控制台。
1) 命令:
如:

$ bin/sqoop eval \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--query "SELECT * FROM staff"

2) 参数:

序号 参数 说明
1 –query 或 –e 后跟查询的 SQL 语句

5.2.10 命令&参数:import-all-tables

可以将 RDBMS 中的所有表导入到 HDFS 中,每一个表都对应一个 HDFS 目录。
1) 命令:
如:

$ bin/sqoop import-all-tables \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--warehouse-dir /all_tables

2) 参数:

序号 参数 说明
1 –as-avrodatafile 这些参数的含义均和import对应的含义一致
2 –as-sequencefile 同上
3 –as-textfile 同上
4 –direct 同上
5 –direct-split-size < n> 同上
6 –inline-lob-limit < n> 同上
7 –m或—num-mappers < n> 同上
8 –warehouse-dir < dir> 同上
9 -z或–compress 同上
10 –compression-codec 同上

5.2.11 命令&参数:job

用来生成一个 sqoop 任务,生成后不会立即执行,需要手动执行。
1) 命令:
如:

$ bin/sqoop job \
--create myjob -- import-all-tables \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456
$ bin/sqoop job \
--list
$ bin/sqoop job \
--exec myjob

尖叫提示:注意import-all-tables 和它左边的–之间有一个空格。
尖叫提示:如果需要连接 metastore,则 –meta-connect jdbc:hsqldb:hsql://hadoop102:16000/sqoop

2) 参数:

序号 参数 说明
1 –create < job-id> 创建 job 参数
2 –delete < job-id> 删除一个 job
3 –exec < job-id> 执行一个 job
4 –help 显示 job 帮助
5 –list 显示 job 列表
6 –meta-connect < jdbc-uri> 用来连接 metastore 服务
7 –show < job-id> 显示一个 job 的信息
8 –verbose 打印命令运行时的详细信息

尖叫提示:在执行一个 job 时,如果需要手动输入数据库密码,可以做如下优化:

<property>
    <name>sqoop.metastore.client.record.password</name>
    <value>true</value>
    <description>If true, allow saved passwords in the metastore.</description>
</property>

5.2.12 命令&参数:list-databases

1) 命令:
如:

$ bin/sqoop list-databases \
--connect jdbc:mysql://hadoop102:3306/ \
--username root \
--password 123456

2) 参数:
与公用参数一样

5.2.13 命令&参数:list-tables

1) 命令:
如:

$ bin/sqoop list-tables \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456

2) 参数:
与公用参数一样

5.2.14 命令&参数:merge

将 HDFS 中不同目录下面的数据合并在一起并放入指定目录中。
数据环境:

new_staff
1   AAA male
2   BBB male
3   CCC male
4   DDD male

old_staff
1   AAA female
2   CCC female
3   BBB female
6   DDD female

尖叫提示:上边数据的列之间的分隔符应该为\t,行与行之间的分割符为\n,如果直接复制,请检查之。

1) 命令:
如:

创建JavaBean:
$ bin/sqoop codegen \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--bindir /home/admin/Desktop/staff \
--class-name Staff \
--fields-terminated-by "\t"

开始合并:
$ bin/sqoop merge \
--new-data /test/new/ \
--onto /test/old/ \
--target-dir /test/merged \
--jar-file /home/admin/Desktop/staff/Staff.jar \
--class-name Staff \
--merge-key id

结果:
1   AAA    MALE
2   BBB    MALE
3   CCC    MALE
4   DDD    MALE
6   DDD    FEMALE

2) 参数:

序号 参数 说明
1 –new-data < path> HDFS 待合并的数据目录,合并后在新的数据集中保留
2 –onto < path> HDFS 合并后,重复的部分在新的数据集中被覆盖
3 –merge-key < col> 合并键,一般是主键 ID
4 –jar-file < file> 合并时引入的j ar 包,该 jar 包是通过 Codegen 工具生成的jar包
5 –class-name < class> 对应的表名或对象名,该 class 类是包含在 jar 包中的
6 –target-dir < path> 合并后的数据在 HDFS 里存放的目录

5.2.15 命令&参数:metastore

记录了 Sqoop job 的元数据信息,如果不启动该服务,那么默认 job 元数据的存储目录为 ~/.sqoop,可在 sqoop-site.xml 中修改。
1) 命令:
如:启动 sqoop 的 metastore 服务

$ bin/sqoop metastore

2) 参数:

序号 参数 说明
1 –shutdown 关闭 metastore
我的GitHub地址:https://github.com/heizemingjun
我的博客园地址:https://www.cnblogs.com/chenmingjun
我的蚂蚁笔记博客地址:https://blog.leanote.com/chenmingjun
Copyright ©2018-2019 黑泽明军
【转载文章务必保留出处和署名,谢谢!】
赞(0) 打赏
分享到: 更多 (0)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏